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ABSTRACT 

The scope of the present study is focused on the evaluation of the seismic response of bridges 

isolated by single concave sliding pendulum isolators (FPS) for the different structural properties 

when the presence of the rigid abutment is considered or neglected (i.e., isolated viaducts). In this 

way, they have been defined two specific multi-degree-of-freedom (mdof) models to simulate the 

elastic behavior of the reinforced concrete pier in combination to the infinitely rigid presence of the 

deck and to the presence of the rigid abutment if considered. Both the numerical models also ac-

count for the non-linear velocity-dependent behavior of the FPS bearings. Considering the aleatory 

uncertainty in the seismic input by means of several natural records with different characteristics, 

a parametric analysis is developed for several structural properties. The relevant results expressed 

as the statistics in non-dimensional form with respect to the seismic intensity have permitted to 

study the differences between the two numerical models in relation to the effectiveness of the seis-

mic isolation.  

SOMMARIO 

Lo scopo del presente studio è focalizzato sulla valutazione della risposta sismica di ponti isolati 

da con dispositivi a pendolo scorrevole (FPS) per diverse proprietà strutturali considerando o tra-

scurando la presenza rigida della spalla. In questo modo sono stati definiti due specifici modelli a 

più gradi di libertà per simulare il comportamento elastico della pila in combinazione alla presenza 

infinitamente rigida dell'impalcato e alla presenza rigida della spalla se considerata. Entrambi i 

modelli numerici tengono conto anche del comportamento non lineare dipendente dalla velocità dei 
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dispositivi FPS. Considerando l'incertezza aleatoria nell'input sismico per mezzo di più registra-

zioni accelerometriche naturali con caratteristiche differenti, viene sviluppata un'analisi parame-

trica al variare delle proprietà strutturali. I risultati rilevanti espressi come statistiche in forma adi-

mensionale rispetto all'intensità sismica hanno permesso di studiare le differenze tra i due modelli 

numerici in relazione all'efficacia dell'isolamento sismico. 

1 INTRODUCTION 

The goal of seismic isolation of bridges is to reduce the forces transmitted from the deck to the 

substructure, i.e., the piers, by increasing the period of the isolation system. During the past years, 

both the elastomeric and frictional isolators have demonstrated their effectiveness in enhancing 

seismic performance of structures and infrastructures [1]-[3]. In this context, an isolated three-span 

continuous deck bridge, equipped with elastomeric bearings, is studied in [4], with the goal to 

evaluate the bearings peak displacement placed at abutment locations. On the other hand, among 

the widely adopted isolators, the friction pendulum system (FPS) bearings have the advantage of 

making the properties of the device independent from the mass deck, which is important in the 

design phase of the isolator [5]. In particular, the introduction of the optimal friction coefficient, 

able to minimize the seismic response of the pier, was first introduced by Jangid in [6]. In this 

respect, the optimal friction coefficient is studied in [7] by varying many properties of the structure 

and the seismic input.  

The goal of this work is to evaluate the pier-abutment-deck interaction when bridges are equipped 

with single concave friction pendulum isolators (FPS).  In particular, two six-degree-of-freedom 

(dofs) models are compared: one representative of a single column bent viaduct (i.e., neglecting the 

presence of the rigid abutment) and the other for the case of multi-span continuous deck bridge (i.e., 

including the presence of the abutment).  More precisely, for both cases, five dofs are adopted for 

the lumped masses of the elastic pier and one additional dof representative of the infinitely rigid 

deck. The equations of motion under a set of seismic inputs are solved for both the models, by 

performing a non-dimensional analysis. The FPS behaviour is represented by a widespread model 

that includes the dependency of the friction coefficient from the velocity. Many bridge properties 

are varied so as to perform a parametric analysis. Then, after having obtained the peak non-dimen-

sional response at the pier level, the optimal sliding friction coefficient, able at minimizing this 

response, is investigated.  

2 NON DIMENSIONAL ANALYSIS AND PROBLEM PARAMETERS 

To model the seismic response of bridges, both including or neglecting the presence of the rigid 

abutment, a six-degree-of-freedom (dofs) model is adopted, where 5 dofs are used for the lumped 

masses of the reinforced concrete (RC) elastic pier, as suggested in [8], and 1 additional dof is for 

the infinitely rigid RC deck.  

Focusing on the case of multi-span continuous deck bridge, where the rigid RC abutment is mod-

elled (Fig. 1), subjected to a seismic input along the longitudinal direction, the equation of motion 

are: 

 

[
 
 
 
 
 
 
𝑚𝑑 𝑚𝑑 𝑚𝑑 𝑚𝑑 𝑚𝑑 𝑚𝑑

0 𝑚𝑝5 𝑚𝑝5 𝑚𝑝5 𝑚𝑝5 𝑚𝑝5

0 0 𝑚𝑝4 𝑚𝑝4 𝑚𝑝4 𝑚𝑝4

0 0 0 𝑚𝑝3 𝑚𝑝3 𝑚𝑝3

0 0 0 0 𝑚𝑝2 𝑚𝑝2

0 0 0 0 0 𝑚𝑝1]
 
 
 
 
 
 

⋅

[
 
 
 
 
 
 
𝑢̈𝑑(𝑡)
𝑢̈𝑝5(𝑡)

𝑢̈𝑝4(𝑡)

𝑢̈𝑝3(𝑡)

𝑢̈𝑝2(𝑡)

𝑢̈𝑝1(𝑡)]
 
 
 
 
 
 

+ (1) 
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+

[
 
 
 
 
 
 

𝑐𝑑 0 0 0 0 0
−𝑐𝑑 𝑐𝑝5 0 0 0 0

0 −𝑐𝑝5 𝑐𝑝4 0 0 0

0 0 −𝑐𝑝4 𝑐𝑝3 0 0

0 0 0 −𝑐𝑝3 𝑐𝑝2 0

0 0 0 0 −𝑐𝑝2 𝑐𝑝1]
 
 
 
 
 
 

⋅

[
 
 
 
 
 
 
𝑢̇𝑑(𝑡)
𝑢̇𝑝5(𝑡)

𝑢̇𝑝4(𝑡)

𝑢̇𝑝3(𝑡)

𝑢̇𝑝2(𝑡)

𝑢̇𝑝1(𝑡)]
 
 
 
 
 
 

+ 

+

[
 
 
 
 
 
 
 
 
 
 
𝑚𝑑
2

𝑔

𝑅𝑝
+

𝑚𝑑
2

𝑔

𝑅𝑎

𝑚𝑑
2

𝑔

𝑅𝑎

𝑚𝑑
2

𝑔

𝑅𝑎

𝑚𝑑
2

𝑔

𝑅𝑎

𝑚𝑑
2

𝑔

𝑅𝑎

𝑚𝑑
2

𝑔

𝑅𝑎

−

𝑚𝑑
2

𝑔

𝑅𝑝
𝑘𝑝5 0 0 0 0

0 −𝑘𝑝5 𝑘𝑝4 0 0 0

0 0 −𝑘𝑝4 𝑘𝑝3 0 0

0 0 0 −𝑘𝑝3 𝑘𝑝2 0

0 0 0 0 −𝑘𝑝2 𝑘𝑝1 ]
 
 
 
 
 
 
 
 
 
 

⋅

[
 
 
 
 
 
 
𝑢𝑑

𝑢𝑝5

𝑢𝑝4

𝑢𝑝3

𝑢𝑝2

𝑢𝑝1]
 
 
 
 
 
 

+ 

+

[
 
 
 
 
 
 
 
 𝑚𝑑

2
𝑔𝜇𝑝(𝑢̇𝑑(𝑡)) 𝑍( 𝑡) +

𝑚𝑑

2
𝑔𝜇𝑎 (𝑢̇𝑑(𝑡) + ∑𝑢̇𝑝𝑖(𝑡)

5

𝑖=1

)𝑍(𝑡)

−
𝑚𝑑

2
𝑔𝜇𝑝(𝑢̇𝑑(𝑡))𝑍(𝑡)

0
0
0
0 ]

 
 
 
 
 
 
 
 

= +𝑢̈𝑔(𝑡) ⋅

[
 
 
 
 
 
−𝑚𝑑

−𝑚𝑝5

−𝑚𝑝4

−𝑚𝑝3

−𝑚𝑝2

−𝑚𝑝1]
 
 
 
 
 

 

 

where 𝑢𝑑 is the deck displacement with respect to the pier top, 𝑢𝑝𝑖  is the displacement of the i-th 

lumped mass of the pier with respect to the lower one, 𝑚𝑑  is the mass of the deck, 𝑚𝑝𝑖 is the mass 

of the i-th lumped mass of the pier, 𝑘𝑝𝑖 is the corresponding stiffness, 𝑐𝑑 and 𝑐𝑝𝑖  are, respectively, 

the viscous damping coefficient for the device and for the pier masses, 𝑍(𝑡) indicate the sign func-

tion of the velocity, with 𝑡 the instant of time and the dots indicate differentiation. The resisting 

forces of the FPS bearings located on top of the abutment and on the pier are, respectively, 𝐹𝑎(𝑡) 

and  𝐹𝑝(𝑡), expressed as the sum of an elastic component and a viscous component [9]: 

𝐹𝑎(𝑡) =
𝑚𝑑𝑔

2
[
1

𝑅𝑎
(𝑢𝑑(𝑡) + ∑𝑢𝑝𝑖

5

𝑖=1

) + 𝜇𝑎 (𝑢̇𝑑 + ∑𝑢̇𝑝𝑖

5

𝑖=1

) 𝑠𝑔𝑛 (𝑢̇𝑑 + ∑𝑢̇𝑝𝑖

5

𝑖=1

)] 

𝐹𝑝(𝑡) =
𝑚𝑑𝑔

2
[
1

𝑅𝑝
𝑢𝑑(𝑡) + 𝜇𝑝(𝑢̇𝑑) 𝑠𝑔𝑛(𝑢̇𝑑)] 

(2) 

where the stiffness of the deck is equal to 𝑘𝑑 = 𝑊/𝑅 = 𝑚𝑑𝑔/𝑅, half for the bearing on the abut-

ment and half for the pier, the radii of curvature of the FPS bearings are 𝑅𝑎 and 𝑅𝑝, placed, respec-

tively, on the abutment and on the pier and assumed equal, 𝑔 is the gravity constant, 𝜇 is the sliding 

friction coefficient of the bearings. As anticipated, the fundamental period of the deck only depends 

on the geometrical properties of the isolator, since it is expressed as 𝑇𝑑 = 2𝜋√𝑚𝑑/𝑘𝑑 = 2𝜋√𝑅/𝑔 

[9]. It noteworthy that the two expressions in (2) differ only in terms of displacements, since 𝐹𝑎(𝑡) 

depends on the relative displacement of the deck with respect to the ground while 𝐹𝑝(𝑡) is function 

of the deck displacement with respect to the pier top. Regarding the sliding friction coefficient, its 

dependency on the velocity is such that [10]: 
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𝜇(𝑢̇𝑑) = 𝑓𝑚𝑎𝑥 − (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) ⋅ 𝑒𝑥𝑝(−𝛼|𝑢̇𝑑|) (3) 

where 𝑓𝑚𝑎𝑥  and 𝑓𝑚𝑖𝑛 are the sliding friction parameters at maximum and zero velocity, 𝛼 is a pa-

rameter that controls the transition from low to large velocities. In this work, it is assumed 𝛼 equal 

to 30 and 𝑓𝑚𝑎𝑥 = 3𝑓𝑚𝑖𝑛.  
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Fig. 1 Six dof model (considering the 

presence of the abutment) 
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Fig. 2. Six dof model (neglecting the 

presence of the abutment) 

 

The equation of motions expressed in (1) are then elaborated so as to obtain their nondimensional 

form, according to the Buckingham’s Π-theorem [11]. In particular, a time scale is introduced and 

assumed equal to 1/𝜔𝑑, with 𝜔𝑑 = √𝑘𝑑/𝑚𝑑  indicating the circular frequency of the isolation sys-

tem. Thus, passing from the time 𝑡 to 𝜏 = 𝑡𝜔𝑑, the ground motion input of equation (1) becomes 

𝑢̈𝑔(𝑡) = 𝑎0𝑙(𝑡) = 𝑎0ℓ(𝜏), where 𝑙(𝑡) is a nondimensional function of the seismic input time-his-

tory over time 𝑡, while ℓ(𝜏) contains the same information in the new time 𝜏. In addition, a length 

scale is introduced equal to 𝑎0/𝜔𝑑
2  , where 𝑎0is an intensity measure for the seismic input. In the 

end, dividing the equations in (1) for the deck mass 𝑚𝑑and introducing the time and length scales, 

the nondimensional equations become:  

 

[
 
 
 
 
 
 
1 1 1 1 1 1
0 𝜆𝑝5 𝜆𝑝5 𝜆𝑝5 𝜆𝑝5 𝜆𝑝5

0 0 𝜆𝑝4 𝜆𝑝4 𝜆𝑝4 𝜆𝑝4

0 0 0 𝜆𝑝3 𝜆𝑝3 𝜆𝑝3

0 0 0 0 𝜆𝑝2 𝜆𝑝2

0 0 0 0 0 𝜆𝑝1]
 
 
 
 
 
 

⋅

[
 
 
 
 
 
 
 
𝜓̈𝑑(𝜏)

𝜓̈𝑝5(𝜏)

𝜓̈𝑝4(𝜏)

𝜓̈𝑝3(𝜏)

𝜓̈𝑝2(𝜏)

𝜓̈𝑝1(𝜏)]
 
 
 
 
 
 
 

+ 

+

[
 
 
 
 
 
 
 
 
 
 
 

2𝜉𝑑 0 0 0 0 0

−2𝜉𝑑 2𝜉𝑝5

𝜔𝑝5

𝜔𝑑
𝜆𝑝5 0 0 0 0

0 −2𝜉𝑝5

𝜔𝑝5

𝜔𝑑
𝜆𝑝5 2𝜉𝑝4

𝜔𝑝4

𝜔𝑑
𝜆𝑝4 0 0 0

0 0 −2𝜉𝑝4

𝜔𝑝4

𝜔𝑑
𝜆𝑝4 2𝜉𝑝3

𝜔𝑝3

𝜔𝑑
𝜆𝑝3 0 0

0 0 0 −2𝜉𝑝3

𝜔𝑝3

𝜔𝑑
𝜆𝑝3 2𝜉𝑝2

𝜔𝑝2

𝜔𝑑
𝜆𝑝2 0

0 0 0 0 −2𝜉𝑝2

𝜔𝑝2

𝜔𝑑
𝜆𝑝2 2𝜉𝑝1

𝜔𝑝1

𝜔𝑑
𝜆𝑝1]

 
 
 
 
 
 
 
 
 
 
 

⋅

[
 
 
 
 
 
 
 
𝜓̇𝑑(𝜏)

𝜓̇𝑝5(𝜏)

𝜓̇𝑝4(𝜏)

𝜓̇𝑝3(𝜏)

𝜓̇𝑝2(𝜏)

𝜓̇𝑝1(𝜏)]
 
 
 
 
 
 
 

+ 

(4) 
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+

[
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0

−1 𝜆𝑝5
𝜔𝑝5

2

𝜔𝑑
2 0 0 0 0

0 −𝜆𝑝5
𝜔𝑝5

2

𝜔𝑑
2 𝜆𝑝4

𝜔𝑝4
2

𝜔𝑑
2 0 0 0

0 0 −𝜆𝑝4
𝜔𝑝4

2

𝜔𝑑
2 𝜆𝑝3

𝜔𝑝3
2

𝜔𝑑
2 0 0

0 0 0 −𝜆𝑝3
𝜔𝑝3

2

𝜔𝑑
2 𝜆𝑝2

𝜔𝑝2
2

𝜔𝑑
2 0

0 0 0 0 −𝜆𝑝2
𝜔𝑝2

2

𝜔𝑑
2 𝜆𝑝1

𝜔𝑝1
2

𝜔𝑑
2 ]
 
 
 
 
 
 
 
 
 
 

⋅

[
 
 
 
 
 
 
𝜓𝑑(𝜏)

𝜓𝑝5(𝜏)

𝜓𝑝4(𝜏)

𝜓𝑝3(𝜏)

𝜓𝑝2(𝜏)

𝜓𝑝1(𝜏)]
 
 
 
 
 
 

+ 

+

[
 
 
 
 
 
 
 
 

𝑔𝜇(𝜓̇𝑑(𝜏))

𝑎0
𝑠𝑔𝑛( 𝜓̇𝑑(𝜏))

−
𝑔𝜇(𝜓̇𝑑(𝜏))

𝑎0
𝑠𝑔𝑛( 𝜓̇𝑑(𝜏))

0
0
0
0 ]

 
 
 
 
 
 
 
 

= +𝑙(𝜏) ⋅

[
 
 
 
 
 
 

−1
−𝜆𝑝5

−𝜆𝑝4

−𝜆𝑝3

−𝜆𝑝2

−𝜆𝑝1]
 
 
 
 
 
 

 

where 𝜓𝑑 =
𝑢𝑑𝜔𝑑

2

𝑎0
 and 𝜓𝑝𝑖 =

𝑢𝑝𝑖𝜔𝑑
2

𝑎0
are the nondimensional displacements,𝜔𝑑 = √

𝑘𝑑

𝑚𝑑
 and 𝜔𝑝𝑖 =

√
𝑘𝑝𝑖

𝑚𝑝𝑖
 are the circular vibration frequencies, 𝜉𝑑 =

𝑐𝑑

2𝑚𝑑
𝜔𝑑 and 𝜉𝑝𝑖 =

𝑐𝑝𝑖

2𝑚𝑝𝑖
𝜔𝑝𝑖  are the damping fac-

tors (respectively for the deck and for the i-th lamped masses of the pier) and 𝜆𝑝 = 𝜆𝑝𝑖 =
𝑚𝑝𝑖

𝑚𝑑
 is the 

mass ratio of the i-th lumped mass (all the lumped masses are assumed equal). Hence, the nondi-

mensional parameters 𝛱 of the problem are: 

𝛱𝜔𝑝
=

𝜔𝑝

𝜔𝑑
, 𝛱𝜔𝑔

=
𝜔𝑑

𝜔𝑔
, 𝛱𝜆 = 𝜆𝑝, 𝛱𝜉𝑑

= 𝜉𝑑 , 𝛱𝜉𝑝
= 𝜉𝑝𝑖 , 𝛱𝜇 =

𝜇(𝜓̇𝑑)𝑔

𝑎0
 (5) 

In the end, to discard the dependency of the nondimensional parameter 𝛱𝜇 from the velocity, its 

value is substituted by 𝛱𝜇
∗ = 𝑓

𝑔

𝑎0𝑚𝑎𝑥
. Regarding the equations of motion for the case of a single-

column bent viaduct (Fig. 2), the nondimensional equation of motion are equal to the ones in (1) 

and (4), without the term 𝐹𝑎(𝑡).  

Regarding the main properties of the problem, the following assumptions are valid both for the case 

of considering or neglecting the presence of the pier-deck-abutment interaction. First of all, con-

cerning the seismic input, a set of 30 seismic ground motions is considered, selected from 19 dif-

ferent earthquakes [12]-[14]. The magnitude varies in the range 6.3 to 7.5, the source-to-site dis-

tance goes from 13 km to 98 km and the peak ground acceleration is in the range 0.13 - 0.82 g. The 

intensity measure (IM), as also previously indicated as the seismic intensity 𝑎0, is herein chosen as 

the spectral pseudo-acceleration 𝑆𝐴(𝑇𝑑, 𝜉𝑑). Assuming the damping ratio 
d

 equal to zero [15], the 

spectral pseudo-acceleration becomes only function of the deck fundamental period, meaning that 

𝑎0 = 𝑆𝐴(𝑇𝑑, 𝜉𝑑). Regarding the structural properties, the damping ratios are set equal to 𝛱𝜉𝑑
=

𝜉𝑑 = 0% and 𝛱𝜉𝑝
= 𝜉𝑝 = 5%, the isolation period varies from 0.10s to 0.20s, the deck period is in 

the range 2s-4s, the mass ratio assumes the value 0.1, 0.15, 0.2 and, finally, the normalized friction 

coefficient is in between 0 and 2. The equation of motions expressed in (4) are solved for each of 

the two models by varying the previously mentioned parameters and by considering each of the 30 

ground motions, using the Runge-Kutta-Fehlberg integration algorithm available in Matlab-Sim-

ulink [16]. For each simulation, the peak normalised response in terms of pier top displacement is 

numerically calculated and expressed as: 

𝜓𝑢𝑝
=

𝑢𝑝,𝑚𝑎𝑥 ∙ 𝜔𝑑
2

𝑎0
=

(∑ 𝑢𝑝𝑖

5
𝑖=1 )

𝑚𝑎𝑥
∙ 𝜔𝑑

2

𝑎0
 (6) 
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Then, the response parameters are probabilistically treated and assumed as lognormally distributed 

[15],[17], with geometric mean 𝐺𝑀 (𝜓𝑢𝑝
) = √𝜓𝑢𝑝1 ⋅. . .⋅ 𝜓𝑢𝑝𝑁

𝑁
, where 𝜓𝑢𝑝𝑗  is the j-th realization 

of the response parameter and 𝑗 = 1,… ,𝑁 with 𝑁 = 30 the total number of seismic inputs.  

4 SEISMIC RESPONSE AND OPTIMAL FRICTION COEFFICIENT 

In this section, the response of the pier and the optimal friction coefficient results are illustrated.  
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Fig. 3. 50th percentile of the maximum normalized pier displacement as function of 𝛱𝜇
∗ , 𝑇𝑑 and 

fixed values of 𝑇𝑝: (a)-(c) considering the abutment; (b)-(d) neglecting the abutment 

Fig. 3 shows, for both the structural systems, the mean value of the maximum normalized pier 

displacement 𝐺𝑀 (𝜓𝑢𝑝
) as function of 𝑇𝑑 and 𝛱𝜇

∗ , for fixed values of 𝑇𝑝 and 𝜆. The mean value 

decreases for larger values of 𝑇𝑑 and of 𝜆. On the opposite, the response is lower for lower values 

of pier period.  

In addition, it is possible to observe the existence of an optimal value where the response is mini-

mized.  In fig. 4 it is illustrated the optimum of 𝛱𝜇
∗, which is not only function of the parameters 

involved in the problem (i.e., 𝑇𝑑, 𝑇𝑝 , 𝜆), but it also depends on the structural system (i.e., if con-

sidering or not the presence of the abutment). 

In particular, the sagging zones of the response as function of 𝛱𝜇
∗ are more pronounced when the 

interaction with the abutment is not considered, since the bearing on top of the abutment slides 

faster than the device placed on the pier. Furthermore, when all the structural parameters 𝛱𝜇
∗ 𝑇𝑝, 𝑇𝑑 

are considered with their maximum values, larger values of the optimum friction coefficient are 

required to increase the energy dissipation. 
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Fig. 4. Optimal friction coefficient as function of 𝑇𝑝 and 𝜆 and for fixed values of 𝑇𝑑: (a)-(c) con-

sidering the abutment; (b)-(d) neglecting the abutment 

5 CONCLUSIONS 

This work analyses the seismic performance of bridges isolated with single concave friction pen-

dulum bearings, focusing on the pier-abutment-deck interaction. In particular, two six-degree-of-

freedom structural systems are modelled: one including the presence of the abutment (i.e., multi-

span continuous deck bridge) and another neglecting its presence (i.e., single-column bent viaduct). 

Different values for the main problem parameters are considered within a parametric analysis and 

the uncertainty in the seismic input is included by considering a set of 30 natural ground motions. 

The equations of motions are numerically solved in a non-dimensional form so as to evaluate the 

maximum normalized response of the pier. This response tends to first decrease and then increase 

as function of the normalized friction coefficient of the bearing. When the presence of the abutment 

is considered (i.e., multi-span continuous deck bridge), this minimum value is less pronounced, 

since the bearing on top of the abutment tends to slide faster than the one on the pier. The existence 

of a minimum value for the pier response has suggested to evaluate an optimal value for the nor-

malized friction coefficient, as function of the other parameters involved. In the case multi-span 

continuous deck bridge, higher optimal values are observed. 
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