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Abstract 

Dimensioning of T-sections is usually carried out using methods originally developed for double symmetrical 

sections such as I-beams. This can lead to very conservative results for shorter length members. This becomes 

even more apparent when using Eurocode 3 to dimension T-sections prone to plate buckling (class 4 

sections). According to the Eurocode, an effective section, rather than the gross section, must be used to 

calculate the dimensions of the section. In this case, an additional effective moment has to be considered 

which is due to the distance between the effective section’s centre of gravity and that of the gross section.  

This thesis looks at the stability behaviour of a number of sections under an axial compressive force. It looks 

at sections which are not prone to plate buckling (class 2) as well as sections which are (class 4). Single 

member finite element models were produced and used for geometrically and materially non-linear analyses 

with imperfections (GMNIA). Three class 2 sections and seven class 4 sections were analysed. The buckling 

resistance was obtained for all of the sections for a variety of different lengths. These results were then 

combined into a buckling curve for each section. The results from the GMNIA analyses were compared to 

the results from the current methods described in Eurocode 3.  

The results of the analyses and the Eurocode 3 calculations showed that there was a large room for 

improvement. A proposal for the dimensioning of class 2 T-sections was suggested and then four proposals 

for the dimensioning of the class 4 sections. The proposals were compared and a proposal made.  

The results for class 2 sections showed that these stockier sections can be described more appropriately 

already by a minor adjustment of the existing Ayrton-Perry formula in the Eurocode.  

It was furthermore found that, for class 4 sections, the additional effective moment caused by the distance 

between the centroids of the gross and effective sections, could be ignored in design equations. This, as well 

as the finding for the class 2 sections, were combined to a suitable proposal for plate buckling prone T-

sections. 

A revision of the method described in Eurocode 3 is necessary. The sections under axial compression can be 

more economically dimensioned by the modifications to the design rules developed in this thesis. Further 

studies could look into T-sections under other types of load, such as a combined axial compression and 

additional moment. 
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Kurzfassung 

Die Bemessung von T- Profilen erfolgt zurzeit an Anlehnung an das Bemessungskonzept für (doppelt- oder 

monosymmetrische) I- Profile.  Dies führt zu sehr konservativen Ergebnissen bei kürzeren Bauteilen.  Vor 

Allem bei T-Profilen, die anfällig gegenüber Plattenbeulen sind (Klasse 4), wird dieser Effekt bei Verwendung 

des Nachweiskonzeptes des EC-3 deutlich erkennbar. Laut EC-3 muss für die Bemessung - anstelle des 

Bruttoquerschnittes - ein effektiver Querschnitt verwendet werden. Unter Anwendung dieses effektiven 

Querschnittes muss ein zusätzliches Biegemoment berücksichtigt werden, welches aus dem Versatz des 

Schwerpunktes zwischen dem Brutto- und Nettoquerschnitt entsteht. 

Diese Masterarbeit untersucht das Tragverhalten einiger T- Profile bezüglich Stabilität unter reiner 

zentrischer Druckbeanspruchung. Es wurden T-Profile untersucht, welche anfällig auf Plattenbeulen sind 

(Klasse 4), ebenso wie jene T-Profile, bei denen kein Plattenbeulen auftritt (Klasse 2). Finite Element 

Modelle für einzelne Stäbe wurden erstellt und geometrisch und materiell nichtlineare Analysen unter Ansatz 

von Imperfektionen (GMNIA) wurden durchgeführt. Von insgesamt 10 untersuchten T-Profilen sind drei in 

der Querschnittsklasse 2,  die restlichen sieben sind Klasse 4. Es wurde die Traglast der Druckstäbe ermittelt, 

wobei deren Stablänge variierte. Aus diesen Ergebnissen wurden anschließend Knickspannungslinien für 

jedes Profil erstellt. Die aus den GMNIA Analysen erhaltenen Knickspannungslinien wurden dann mit dem 

EC-3 verglichen. 

Die Ergebnisvergleiche der GMNIA Analysen und dem EC-3 zeigen auf, dass es einen Bedarf an 

Verbesserung des bisherigen Nachweiskonzeptes gibt. Es wurde ein Vorschlag für Klasse 2 Profile gemacht, 

sowie vier Vorschläge für Klasse 4 Profile.  

Die Ergebnisse für Klasse 2 zeigten, dass bereits eine kleine Modifizierung der Ayrton-Perry Formel des 

Eurocodes deutlich bessere Ergebnisse für diese gedrungenen Querschnitte liefert. Es wurde zudem 

bewiesen, dass das zusätzliche Biegemoment infolge der Schwerpunktexzentrizität durch Berücksichtigung 

des effektiven Querschnittes für Klasse 4 Querschnitte bei der Stabilitätsbemessung vernachlässigt werden 

kann. Diese beiden Erkenntnisse wurden in einem endgültigen Vorschlag zusammengefasst. 

Eine Verbesserung des Nachweiskonzeptes des Eurocode 3 in Anlehnung an die in dieser Masterarbeit 

entwickelten Vorschläge wäre notwendig, um eine wirtschaftliche Stabilitätsbemessung von T-Profilen 

durchführen zu können. Des Weiteren wären weitere Untersuchungen der T-Profile unter kombinierten 

Beanspruchungen, wie zentrischer Druck mit Biegemoment  notwendig. 
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1 Introduction 

3 

 

This thesis will look into stability behaviour specifically for Eurocode classes 2 and 4 

sections under axial compression. GMNIA buckling load calculations (geometrical and 

material non linear analyses with imperfections) will be carried out on a variety of T-section 

sections of different lengths. The ABAQUS standard finite element program will be used 

for these calculations. 

The T-section members will be pin ended as the Eurocode is also based on pin ended 

columns. The buckling load results of the numerical experiments and the buckling loads 

suggested by the current Eurocode 3 will be compared. Preliminary studies have shown that 

columns with a low value of global slenderness and slender cross section(class 3,4), will 

have a much higher buckling load than the value described in the Eurocode; these findings 

should be corroborated and expanded in this thesis. Finally, suggestions will be posed as to 

how the Eurocode 3 could be adapted to incorporate the new findings. 

In summary the questions that will be answered are: 

 What are realistic buckling loads for double pinned T-sections under the 

influence of an axial compressive load? 

 How does the section’s class affect the calculation method? 

 How do these results compare to the Eurocode 3 values? 

 How can we calculate an accurate value for the buckling strength so that 

cross-sections are then economically dimensioned? 
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2  Selection of Investigated Cross-Sections 
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The Eurocode classes range from 1 – 4 and differentiate as described in the following: 

 Class 1 and 2 – The plastic resistance can be used for member design. 

 Class 3 – The elastic resistance can be used for design purposes. 

 Class 4 – A reduced cross section needs to be used to calculate the 

resistance. The reduction takes into account that parts of the section are 

likely to buckle locally and therefore reduce the elastic resistance. 

A S235 steel was used so 1 was used for the calculations (see Table 3). As stated in 

Table 3, the plate buckling coefficient, , was calculated using Eurocode 3, part 1-5. Two 

cases were considered: 

 Pure axial compression ( 1 ) 

 Pure bending – even though axial compression is the only external load case 

considered in this thesis, the bending case was also of relevance because a 

nominal bending moment of ∗  had to be considered in the 

design calculations according to Eurocode 3, due to the shift of the centre of 

gravity, . 

In the bending case, it was first assumed that the maximum compression stress , occurred 

at the free end of the web and 0 at the centre of gravity of the gross section. Therefore, 

 was calculated according to Figure 5 and finally, the stress ratio, , was calculated using 

the results from . 
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3 Defining the Effective Dimensions and Properties 

According to EN 1993-1-1, the strength of a slender (class 4) section shall be determined 

using the so-called “Effective Width Method” of EN 1993-1-5 [4], which prescribes 

reduction factors and rules for the determination of remaining, effective width of sections 

that are prone to local buckling. In addition,  EN 1993-1-1 states “Where a class 4 cross 

section is subjected to an axial force, the method given in EN 1993-1-5 should be used to 

determine the possible shift  of the centroid of the effective area  relative to the 

centre of gravity of the gross cross section and resulting additional moment”, which means 

that an additional bending moment, ∆ , must be considered in design calculations, the 

magnitude of which depends on the precise definition and geometry of the remaining, 

effective cross-section (∆ ∗ ). 

There is also an alternative “Effective Thickness Method” that is described in Eurocode 3 

part 1-3 [5]. This method is usually used for cold formed steel sections with a thickness of 

less than 3mm. In contrast to EN 1993-1-5, in this method the total depth of the effective 

cross-section remains equal to the depth of the gross section, which means that in both 

cases (N and M) the actual, physical outer-most fibre in the cross-section describes the 

design-critical point. 

In Eurocode 3 part 1-5, it is not clearly stated if, in the case of outstanding plates, such as 

the web of a T-section, the elastic modulus of the effective section, ,  should be 

defined by the distance to the outermost fibre of the gross or the effective section. The 

latter one seems to be the more accurate one, because a definition of the stresses outside of 

a section is not used in practice. 

EN 1993-1-1, section 6.2.9.3 (2) states that, for ease, the effective area  and the 

effective section moduli, ,  and , , may be calculated independently for an 

isolated compression force and an isolated bending moment, respectively. However, it is 

also possible – and more accurate - to calculate the effective cross-sectional properties for 
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3.1.2 Determination of  , ,  for isolated bending 

For pure bending, but also due to ∆ ∗ , the “method of effective widths” 

described in Eurocode 3 part 1-5 is an iterative process, as the reduction in width causes the 

stress distribution to change and the stress distribution defines the width that is used as basis 

for the calculation of the area reductions. This means that the definition of an effective 

section is dependent on the applied moment and appropriate stress gradient. 

The calculation of the initial stress ratio,	 , and the starting plate buckling coefficient, , 

for the first iteration of pure bending has already been calculated in chapter 2.2 

“Classification of the cross-sections”.  

As the centre of gravity was in the fillet for the HE-A 500,  was positive (only compression 

stresses in the web). For all of the other sections  was negative because the centroid of the 

gross-section is in the web, and thus the two extremities of the web plate are subjected to 

stresses of opposite sign. This means that all of the values for the IPE sections had to be 

calculated using the second row in Table 6 and for the HE-A using the first row. 

It is very important to note that Eurocode 3, part 1-5 very clearly makes use of the 

“fictitious” stress at the outermost fibre of the slender outstanding plate (in the case of T-

sections: mainly the web) for the determination of  - i.e. a stress that is “outside” of the 

effective cross-section, in all iteration steps except the very first one (when the gross section 

is still active).  
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were assumed at the extremity of the effective and not the gross section. Interestingly, 

variation 4 was not always the most conservative method. 

3.5 Defining the effective sections used in this thesis 

For this thesis it was decided that the two effective sections for the isolated loading 

conditions (N and M) would not be used – the more accurate iterative method based on 

the combined stress state due to  and Δ ∗ 	 was used instead (N.B. The shift  

was also calculated for the combined stresses due to Δ ). This method used to obtain 

an effective section for both the axial compression as well as the bending due to the 

centroid shift is explained in 3.5.1 “Axial compression and moment due to centroid shift”. 

3.5.1 Axial compression and moment due to centroid shift 

Using EC 3, part 1-5, this procedure was carried out for all of the sections under axial 

compression. The starting point for these calculations was a stress ratio of 1. For the 

first iteration, the shift in the centroid between the gross section and the new effective 

section (based on 1) was calculated, ∗. 

∗
,

∗ 

Next the force present in the first iteration ∗ was calculated so that the moment that was 

induced through the centroid shift could be taken into account. It was assumed that the 

stress at the free end of the effective web was equal to the yield strength, . The criterion 

used to calculate the force was  

∗

∗

∗ ∗ ∗ ∗ ∗
,

∗

,
∗  

From here ∗ was calculated. 

∗

1
∗

∗ ∗ ∗
,

∗

,
∗

 

Before the accurate stress ratio  could be calculated,  and  had to be calculated.  
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4 FEM Model for GMNIA Analyses 

Rather than carrying out lots of costly real experiments, appropriate finite element models 

were produced and buckling force calculations were carried out on these. This corresponds 

to the state-of-the-art in stability research for steel structures and is justified by the high 

degree of accuracy that can be achieved by numerical non-linear buckling analyses. The 

finite element program that was used was ABAQUS standard 10.1.  

4.1 System 

As in Eurocode 3, the calculations were carried out on a single member that was pinned at 

both ends and the axial compression was applied to the centroid of the gross cross section. 

The calculations were carried out for 20 different member lengths for each of the cross 

sections. The length for each member was calculated using the bending slenderness in the z 

direction, ̅  for the gross section, as an input parameter, in order to make sure that lengths 

corresponding to comparable levels of buckling sensitivity were chosen for the different 

cross-sections. 

The ̅  slenderness was varied in intervals of 0.1, (0.1, 0.2, 0.3, ... , 1.9) up to, 2.0 and using 

the following formula the real member length, , for each cross-section shape was then 

defined. 
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1-5, Annex C, the local imperfection amplitude,	 , ,  was 80% of the manufacturing 

tolerance. 

, 150
∗ 80% 

The position of every node, for each of the situations was calculated. All the possible 

situations were considered and a model made for each. For example, a member with 100% 

global imperfection sideways and 70% local imperfection where the first half sin wave 

deflection is in the same direction as the global deflection. 

As all of the calculation members were 100 elements long, it was very simple to add the 

global imperfection. It was simply dependent on the amplitude which was dependent on 

the direction of the imperfection and whether the global imperfection was the main 

imperfection. 

The position of every node could then be calculated depending on the node plane number, 

, along the length of the member. 

, , , ∗ sin
∗
100

						 		0 100 

The local imperfection, as previously stated, was considered to be a rotation around the 

centre of gravity (Figure 16). The final starting coordinates of the nodes were dependent 

on; 

 the number of half sine waves along the length of the member. 

 the dominant imperfection (local or global). 

 the distance from the end of the member. 

 the size of the imperfection. 

 the distance of the node from the centre of gravity. 

The rotation of the section at each node plane  was first calculated dependent on the size 

of the largest local imperfection and in which plane along the x axis the section was to be 

found. 
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,

1
∗

∗ ∗
100

																	 	0 100 

Once the rotation had been defined it was possible to define the coordinates of every node 

of each section. The original coordinates of the nodes were needed, . 

∙  

The transformation matrix, , is a simple rotation matrix. It is different for a clockwise and 

an anticlockwise rotation. 

cos ,

1
∗

∗ ∗
100

sin ,

1
∗

∗ ∗
100

sin ,

1
∗

∗ ∗
100

cos ,

1
∗

∗ ∗
100

 

In the other direction it looks like this 

cos ,

1
∗

∗ ∗
100

sin ,

1
∗

∗ ∗
100

sin ,

1
∗

∗ ∗
100

cos ,

1
∗

∗ ∗
100

 

The vector for the global imperfection is dependent on the direction of the imperfection. 

Either it curves upwards, downwards or laterally. 

̅ , ∗ sin
∗
100

∗ 1
0
					  

̅ , ∗ sin
∗
100

∗ 0
1
						  

From the global and the local imperfections, the final starting coordinates were calculated 

for each of the nodes. The final starting positions of the nodes are given using these 

formulae: 

̅ 0.7 ∗ ∙  

0.7 ∗ ̅ ∙  
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5 Buckling Strength of Class 2 Sections 

As stated in the introduction, the main focus of this thesis is put on slender class 4 sections. 

However, in order to understand the interaction problem for class 4 sections and the 

appropriate torsional-flexural and lateral-torsional effects, it was decided that class 2 

sections should be looked at first, allowing for a clearer separation of the global (torsional-

flexural) buckling phenomenon from the interactive global-local buckling phenomenon. 

The difference between class 2 sections and the class 4 sections is that for the first ones 

there is no danger of local buckling accelerating the loss in stability. This means, also, that 

there will be no moment  present when the T-section is loaded in the centre of gravity 

and therefore only lateral buckling and torsion-flexural buckling modes are possible when 

loaded with an axial compression force. 

5.1 Studied class 2 section 

Initially, a single class 2 section was considered for the calculations concerned with class 2 

sections. For this, a modified IPE 500 was used. The web thickness was increased until it 

was a class 2 section. As the section was to be made of S235 steel and loaded under an axial 

compression load, this meant that the /  ratio had to be less than 10. 

10 

As the depth of the section was kept the same the thickness was calculated. 
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Twenty members were calculated, each with a different length. The lengths of the members 

were selected as described in 4.1 “System”. Here is an example for this section shown in 

Figure 24 and based on a dimensionless slenderness of 0.6. 

̅ ∗ ∗ ∗ 0.6 ∗ ∗
21000
23.5

∗
1092.800
85.3728

202	  

The members with these lengths were then analysed in ABAQUS. The members were 

calculated taking into account the modelled local and global imperfections. From the 12 

results for each length, the smallest was taken as the defining value. 

5.3 ABAQUS results 

The results were obtained from ABAQUS by seeing at which step the calculations aborted. 

If the calculation had not aborted and continued to the end then the full resistance had 

been achieved. These results were then plotted as a graph of the reduction factor against 

the slenderness ̅ , which will be given in chapter 5.4. This can be seen in Figure 25. 

 

 

Figure 25: GMNIA results for a class 2 T-section 
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The comparison to the Euler critical load was also made. This is the maximum critical load 

that an ideal column can carry. An ideal column is a perfectly straight, homogenous column 

that does not contain any residual stress [9]. The section is 100% identical along its entire 

length. 

5.4 Results and comparison with Eurocode 3 

The resistance to an axial force according to Eurocode 3 was then calculated. 

The value of the cross-section capacity  was used that had previously been calculated in 

5.2 “Section properties”. The critical elastic torsional force ,  and the critical elastic 

torsional-flexural force, ,  were calculated as stated in the dissertation from Peter Kaim 

[7]. 
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In Table 22 the results for both buckling curves can be seen. These needed to be plotted 

against the previous FEM results and the Euler curve. 

As the curves in Eurocode 3 are all based on the relative slenderness, the results were 

plotted as slenderness against the reduction factor so that they could be directly compared 

with the Eurocode 3 buckling curves. Both curves were plotted in the same diagram and 

can be seen in Figure 26. 

 

Figure 26: Modified ½ IPE 500 under compression - Comparison with buckling curves b and c 

It can be seen that buckling curve b seems to be inaccurate and non-conservative for this 

section. Largely, this may be due to the relatively large compressive residual stresses in the 

flange that have been assumed. More work would be needed to check the real residual 

stress distribution. Buckling curve c, however, had a margin of safety and never returns an 

unsafe value.  

Buckling curve c was assumed to be the more appropriate curve and further calculations 

were then based on this curve.  

The most interesting finding in these plots, however, is that there is a very high margin of 

safety for the less slender members. It can be seen that the results for the c curve, at a 
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slenderness of 0.5 are conservative. A value of 0.85 is calculated where as the ABAQUS 

calculations returned a value of around 1.0. Most strikingly, all buckling curves start at a 

value of ̅  equal to about 0.5, even when the members have a length of practically 0 cm. 

This is due to the fact that the non-dimensional torsional-flexural slenderness is not zero for 

T-section members with zero length. 

The limit for the slenderness can be explained. 

̅
,

, ,
 

At zero length,  ,  converges towards , : 

, 	 ,

2 ∗ 1
1 ,

,
1 ,

,
4 ∗ ∗ ,

,
 

→ 0 → , 	∼ ,  

It is thus clear that the torsional-flexural slenderness will tend towards: - 

̅
,

∗
∗ ,

 

In summary, although buckling curve b was not suitable, buckling curve c was too 

conservative. For all members with a slenderness value, ̅ , less that 0.75 the 

dimensioning would be very conservative. This meant that maybe there would be a better 

buckling curve or reduction formula which is not yet incorporated into Eurocode 3. 

5.5 Proposed hypothesis from Taras et al 

During the development of this thesis, it was proposed (Taras et al., 2014) that the real 

behaviour could better be described when amending the buckling reduction formula in a 

way that considers not only the torsional-flexural slenderness but – for the term related to 

the “generalized imperfection amplitude ” of the buckling curve - also to the buckling 
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slenderness around the z-z axis. The proposal was that the coefficient for the reduction 

factor should be calculated as follows: 

Φ 0.5 1 α λ 0.2 λ  

 

Figure 27: New proposal (Taras et al.) and FEM comparison – plotted over the torsional-flexural 

slenderness 
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Figure 28: New proposal (Taras et al.) and FEM comparison – plotted over the member length 

This hypothesis fits very well with the results obtained from the ABAQUS calculations. 

As one can see the new proposal was always closer to the calculations than the Eurocode 3 

results. This meant that it was more favourable and economic to use for the dimensioning 

of T-sections than the current Eurocode rule. The results were mostly slightly conservative 

and had a maximum “un-conservative” error of -2.2% when the slenderness was around 

0.5. This can be considered to be a negligible inaccuracy. 

5.6 Further sections 

In order to further confirm the accuracy and validity of the proposed new formulation for 

flexural-torsional buckling of class 2 T-sections, the same methods and calculations as 

above were carried out for a section that was right on the boundary of Eurocode classes 1 

and 2, this was named IPE 500-12 (N.B. 12 = class 1, class 2), as well as another section on 

the boundary of classes 2 and 3, which was named IPE 500-23 (N.B 23 = class 2, class 3). 
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Figure 29: IPE 500-23 comparison new proposal and Eurocode 3 – plotted over slenderness 

 

Figure 30: IPE 500-21 comparison new proposal and Eurocode 3 – plotted over slenderness 
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The basis for these specimens was again the IPE 500 section. The web was made 

thicker/thinner so as to obtain the aforementioned class 2 sections. The dimensions of the 

flange were not changed. The depth of the web was still 21.3 cm. The thickness of IPE 500-

12 web was 2.36 cm and the thickness of the IPE 500-23 was 2.13 cm. 

The results can be seen as the reduction factor plotted against the torsional-flexural 

slenderness in Figure 29 and Figure 30 whereas the results are plotted as the buckling force 

against the length in Figure 31 and Figure 32. The results showed that in both of these cases 

the Eurocode 3 method of dimensioning was extremely inaccurate for shorter lengths. It 

seemed that the results for these two sections were just as accurate as with the first section, if 

not better. Obviously, as the maximum force was only dependent on the area of the 

section, this value was higher for the IPE 500-12 and lower for the IPE 500-23. The results 

stayed on the conservative side of the ABAQUS results for a larger portion of the plot for 

the IPE 500-23. 

In both cases the first portion of the line showed that there was room for improvement in 

the Eurocode method of calculation. It also showed that the proposal from Taras et al 

seemed to fit the results almost perfectly. 

 

Figure 31: IPE 500-23 comparison new proposal and Eurocode 3 –plotted over length 
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Figure 32: IPE 500-21 comparison new proposal and Eurocode 3 –plotted over length 
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6 Class 4 Buckling Strength – General Eurocode 3 Rules 

To start the specific investigations for T-sections, it was necessary to see how the Eurocode 

3 buckling strength is calculated for class four sections. Due to the shift of centroid that 

needs to be considered in class 4 T-sections, the treatment of the interactive global-local 

buckling behaviour of class 4 T-sections according to the Eurocode is very complex, and 

always requires the consideration of bending moments. In the original EN-version of EC3-

1-1, this would not be (easily) possible, since the interaction formulae given for members in 

bending-compression (“beam-columns”) are only valid for double-symmetric sections; the 

only possibility given in this case would be the use of second-order based stress 

verifications. 

A somewhat easier alternative is found in the Austrian national annex to the Eurocode 3 

part 1-1[10] which contains specific rules for mono-symmetric sections. The interaction 

criteria for mono-symmetric sections that need to be fulfilled according to this document 

are as follows: 

∗
∗ ,

∗ ,
1										 . 1  

∗
,

∗ ,
1										 . 2  

∗
,

∗ ,
1										 . 3  

In the case of the T-sections under axial compression, no additional external moment acts 

on the members. The only moment present is the one that occurs due to the shift in the 

centroid of the effective section ( , ∗ ). This leads to a uniform bending 

moment diagram in the beam column, meaning that 1.0.  
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The axial design resistances for the class 4 sections were calculated using the following 

formula. 

∗
 

The partial factor  was 1.0 as stated in Eurocode 3 part 1-1. This means that the 

characteristic and design values are the same.  

Thus the following equations can be used. 

∗ ∗
∗ 	

∗ ,
1										 	 1  

∗ ∗
∗

∗ ,
1										 	 2  

∗ ∗
∗

∗ ,
1										 	 3  

To find the ultimate limit load,  was increased for each of the criteria until left side of 

the inequality was exactly equal to 1.0. When the equation was no longer true, the next 

criterion was checked. After all of the maximum values were obtained, the smallest was 

then the ultimate limit load according to Eurocode 3. 

6.1 Lateral-torsional buckling around the y-y axis – Equ.(1) 

The first criterion was checked and a value obtained like this. The value for  was 

obtained using the Ayrton-Perry equations [3]. 

1

Φ Φ λ
1.0 

The values for the reduction factor could not be bigger than 1.0. The value, Φ , to help 

calculate the reduction factor needed to be calculated.  

Φ 0.5 1 α λ 0.2 λ  
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which was entered in the formula with the width of the web and the height also equal to 

thickness of the web. With this information the flange ratio was acquired. 

 

In the case of the T-sections, the flange was always in tension compared to the end of the 

web. This meant that  was always a bit larger than -1. For cases where  is smaller than 

zero the value for  is calculated as follows: 

∗
2

 

While for mono-symmetric I-sections the height  is equal to the distance between the 

centroids of the two flanges, for T-sections the total depth of the section was used. All of 

the other components for  were known, so the critical moment was calculated using the 

formula above. From there the relative lateral-torsional slenderness was obtained. 

̅ , ∗
 

Note that all the terms, i.e. the critical moment, the section modulus and the slenderness, 

relate to the “smaller flange” (index “s”), i.e. in the case of T-sections the outstanding tip of 

the web. 

As before for the buckling around the y-y axis, the Ayrton-Perry equations were used. Next 

the value to help calculate the reduction factor was found. 

Φ 0.5 1 α λ 0.2 λ  

As stated before the value for α  was taken as 0.76 and then the reduction factor for 

lateral-torsional buckling was obtained. 

1

Φ Φ ̅
1.0 
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The final part of the equation that needed to be defined was the resistance to the bending 

moments around the y-y axis. This was very simple and shown in the next equation. 

,
, ∗

 

With all of this information it was possible to calculate the buckling force resistance against 

lateral-torsional buckling due to bending around the y-y axis. 

6.2 Torsional-flexural buckling around the z-z axis – Equ.(3) 

Next the following criterion was considered; 

∗ ∗
∗ e

∗ ,
1.0 

Note that this equation, which was specifically developed for mono-symmetric I-sections, 

requires the calculation of the resistance ,  - leading to compression stresses at the 

flange of the T-section. The equations that were used for the evaluation of this equation are 

listed here. Where they are analogue to the equations above, no explanation has been 

added. 

1

Φ Φ λ
1.0 

Φ 0.5 1 α λ 0.2 λ  

The values for α  were again taken from Table 21 and Table 23. These were the same as 

for the y direction, 0.49. 

λ
A ∗ f

N ,
 

N ,
∗ ∗

 

∗ ∗
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The factor  is needed for the interaction coefficients. 

0.6 0.4 ∗ 1.0 

N.B. constant moment - 1.0 

1
0.05 ∗ ̅ ∗

0.25
1

0.05 ∗
0.75

 

The elastic section moduli were calculated earlier, . 

̅ , ∗
 

Φ 0.5 1 α λ 0.2 λ  

N.B. α 0.76 

1

Φ Φ ̅
1.0 

The value for  was calculated earlier.  

,
, ∗

 

With all of this information it was possible to calculate the buckling forces due to the 

lateral-torsional buckling around the z-z axis. 

6.3 Torsional-flexural buckling – Equ.(2) 

The final equation that needed to be fulfilled was 

∗ ∗
∗ e

∗ ,
1 
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All the parts of this equation had already been defined except for the torsional flexural 

reduction factor. To define the reduction factor  it was necessary to use equations for 

N ,  – the ones reported in the dissertation from P. Kaim were used [7]. 

The critical torsion force was necessary to come to the critical torsional-flexural force and 

for this the radii of gyration, ,  and the difference between the position of the centre of 

gravity and the shear point,  are necessary to know. (see figure describing Table 2)  

 

 

z
2

 

The  is defined 

 

,
1
∗ ∗  

Using ,  the value for ,  could then be defined. 

,
,

2 ∗ 1
1 ,

,
1 ,

,
4 ∗ ∗ ,

,
 

Once the critical force has been calculated the torsional-flexural slenderness was calculated. 

̅ ∗

,
 

Then using the Ayrton-Perry formulae the reduction factor was calculated. The Eurocode 

states that for torsional flexural failure the imperfection factor  is the same as  
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Φ 0.5 1 α λ 0.2 λ  

N.B. α 0.49 

1

Φ Φ ̅
1.0 

With all of this information it was possible to calculate the buckling force resistance due to 

the torsional-flexural buckling combined with the lateral-torsional one. 

As the equation to calculate  is based on mono-symmetrical I beams, the values were 

checked using the software LTBeam, for all of the possible lengths. LTBeam is a program 

where the smallest possible length that could be calculated was 100cm. The difference in 

the final results between using the equation and LTBeam are minimal. The calculations 

were therefore seen as optimal for the calculations. 

The final buckling force resistance was the smallest value returned from these three 

equations.  

6.4 ABAQUS calculations 

The calculations were carried out in ABAQUS using the model described in chapter 4 

“FEM Model”. The model was loaded with the cross sectional plastic capacity of the gross 

section as the reference load. This force was applied to the model in steps. The actual 

loading resistance for the model was then reached when the subject failed. The calculation 

returned the percentage of  at which the member failed. This was the actual reduction 

factor. 
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6.4.1 Results for the IPE 300 section 

 

Figure 33: IPE 300 under compression - comparison between present Eurocode 3 and the 

ABAQUS calculations – plotted over the torsional-flexural slenderness 

The Eurocode results plotted in these diagrams is the smallest value from the three 

equations explained earlier. 
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6.4.2 Results for the IPE 400 section 

The Eurocode 3 values for the buckling force and those that were obtained from the finite 

element calculations were also compared for the IPE 400. The results can be seen in 

Figure 39 and Figure 40.  

 

Figure 39: IPE 400 under compression - comparison between Eurocode 3 and the ABAQUS 

calculations – plotted over the torsional-flexural slenderness 
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6.4.3 Results for the IPE 500 section 

 

Figure 45: IPE 500 under compression - comparison between present Eurocode 3 and the 

ABAQUS calculations – plotted over the torsional-flexural slenderness 

 

Figure 46: IPE 500 under compression - ABAQUS results and Eurocode 3 resistances – plotted 

over length 
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the Eurocode 3 returns a value just over 0.5. This meant that yet again Eurocode 3 allowed 

roughly half of the resistance from the section to be used for dimensioning. 

6.4.4 Results for the IPE 600 section 

 

Figure 47: IPE 600 under compression - comparison between present Eurocode 3 and the 

ABAQUS calculations – plotted over the torsional-flexural slenderness 

 

Figure 48: IPE 600 ABAQUS results and Eurocode 3 resistances – plotted over length 
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As expected the results followed a very similar pattern to the previous sections. What was 

interesting was the number of different failure modes, or rather, of relevant geometric 

imperfection patterns. 

Cross Section [cm] Imperfection Mode 

1/2 IPE 600 44 70% upwards global, 100% local 

1/2 IPE 600 88 70% sideways global, 100% local 

1/2 IPE 600 131 70% upwards global, 100% local 

1/2 IPE 600 175 70% upwards global, 100% local 

1/2 IPE 600 219 100% sideways global, 70% local 

1/2 IPE 600 263 100% sideways global, 70% local 

1/2 IPE 600 306 100% sideways global, 70% local 

1/2 IPE 600 350 100% sideways global, 70% local 

1/2 IPE 600 394 100% sideways global, 70% local 

1/2 IPE 600 438 100% sideways global, 70% local 

1/2 IPE 600 482 100% sideways global, 70% local 

1/2 IPE 600 525 100% sideways global, 70% local 

1/2 IPE 600 569 100% sideways global, 70% local 

1/2 IPE 600 613 100% sideways global, 70% local 

1/2 IPE 600 657 100% sideways global, 70% local 

1/2 IPE 600 700 100% sideways global, 70% local 

1/2 IPE 600 744 100% sideways global, 70% local 

1/2 IPE 600 788 100% sideways global, 70% local 

1/2 IPE 600 832 100% sideways global, 70% local 

1/2 IPE 600 875 100% sideways global, 70% local 

Table 27: Failure modes of the IPE 600 

In Table 27 the imperfection modes are listed that all occur in the IPE 600 experiments. 

There were more imperfection modes present at failure in the IPE 600 than in the 

previous sections however the buckling curve looked remarkably similar. 
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Figure 53: HE-A 500 under compression - comparison between present Eurocode 3 and the 

ABAQUS calculations – plotted over the torsional-flexural slenderness 

 

Figure 54: HE-A 500 under compression - ABAQUS results and Eurocode 3 resistances – plotted 

over length 
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Figure 59: IPE 500 wide, under compression - comparison between Eurocode 3 and ABAQUS 

calculations – plotted over the torsional-flexural slenderness 

 

Figure 60: IPE 500 wide, under compression - ABAQUS results and Eurocode 3 resistances – 

plotted over length 
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Cross Section [cm] Imperfection Mode 

1/2 IPE 500 - wide 66 70% upwards global, 100% local 

1/2 IPE 500 - wide 131 70% upwards global, 100% local 

1/2 IPE 500 - wide 197 70% upwards global, 100% local 

1/2 IPE 500 - wide 263 70% upwards global, 100% local 

1/2 IPE 500 - wide 328 70% upwards global, 100% local 

1/2 IPE 500 - wide 394 70% upwards global, 100% local 

1/2 IPE 500 - wide 460 70% upwards global, 100% local 

1/2 IPE 500 - wide 525 70% upwards global, 100% local 

1/2 IPE 500 - wide 591 100% upwards global, 70% local 

1/2 IPE 500 - wide 657 100% upwards global, 70% local 

1/2 IPE 500 - wide 722 100% upwards global, 70% local 

1/2 IPE 500 - wide 788 100% upwards global, 70% local 

1/2 IPE 500 - wide 853 100% upwards global, 70% local 

1/2 IPE 500 - wide 919 100% upwards global, 70% local 

1/2 IPE 500 - wide 985 100% upwards global, 70% local 

1/2 IPE 500 - wide 1050 100% upwards global, 70% local 

1/2 IPE 500 - wide 1116 100% upwards global, 70% local 

1/2 IPE 500 - wide 1182 100% upwards global, 70% local 

1/2 IPE 500 - wide 1247 100% upwards global, 70% local 

1/2 IPE 500 - wide 1313 100% upwards global, 70% local 

Table 28: Imperfection modes for the modified HE-A 500 wide 

As with the normal IPE sections, this curve (Figure 60) also contained two parts. In the first 

part the local imperfections were decisive. In the second part the global imperfections were 

more decisive. With this section however the local imperfection was definitive for much 

longer members. The failure modes for this section can be seen in Table 28. The values 

for the Eurocode curve were mainly dominated by the equation for lateral-torsional failure 

around the y-y axis (Equ.1). Torsional-flexural failure (Equ.2) was, according to the 

Eurocode, dominant only up to a length of 197cm. 

The ABAQUS calculation value for the reduction factor dropped far more rapidly under 

0.7 as the other sections however, it was still above the value suggested by the Eurocode. 

The dimensioning for the Eurocode 3 was not only very conservative for members with a 

low slenderness but also for the longer members. 

Similar to the other sections the Eurocode 3 and the ABAQUS calculations neared each 

other the more slender the members. 
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6.4.7 Results for the modified IPE 500 thin section 

Finally the modified IPE 500 with a flange that was just 100mm wide was studied. Here 

there was no doubt about which axis was the weakest. The z-z was far weaker and therefore 

the section would be more sensitive to sideways imperfections. This was the first section 

where there was such a large difference between the strengths of the axes.  

 

Figure 61: IPE 500 thin under compression - comparison between Eurocode 3 and ABAQUS 

calculations – plotted over the torsional-flexural slenderness 
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Figure 62 : IPE 500 thin under compression - ABAQUS results and Eurocode 3 resistances – 

plotted over length 

A small inconsistency could be seen at a length of 50cm. At first it was assumed that this 

may be due to a change in the defining mode. The defining modes are shown in Table 29. 

As there was no change in the defining mode in this area of the plot, it must have had 

another explanation. It seems as if this inconsistency may be due to the way in which the 

local imperfections were implemented. It was assumed that the member length was equal to 

a length where the number of half sine waves was very favourable for the buckling 

resistance. Because of the size of this inconsistency, it can be ignored. 

The results for this section also show that there is a large need for improvement to the 

Eurocode. How the large discrepancy could be countered will be looked at in chapter 7 

“Development and verification of alternative design proposals for Class 4 ”. 
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Cross Section [cm] Imperfection Failure Mode 

1/2 IPE 500 - thin 17 70% sideways global, 100% clockwise local 

1/2 IPE 500 - thin 34 70% sideways global, 100% clockwise local 

1/2 IPE 500 - thin 51 70% sideways global, 100% clockwise local 

1/2 IPE 500 - thin 68 70% sideways global, 100% anti‐clockwise local 

1/2 IPE 500 - thin 85 100% sideways global, 70% clockwise local 

1/2 IPE 500 - thin 102 100% sideways global, 70% clockwise local 

1/2 IPE 500 - thin 119 100% sideways global, 70% anti‐clockwise local 

1/2 IPE 500 - thin 137 100% sideways global, 70% clockwise local 

1/2 IPE 500 - thin 154 100% sideways global, 70% anti‐clockwise local 

1/2 IPE 500 - thin 171 100% sideways global, 70% anti‐clockwise local 

1/2 IPE 500 - thin 188 100% sideways global, 70% clockwise local 

1/2 IPE 500 - thin 205 100% sideways global, 70% anti‐clockwise local 

1/2 IPE 500 - thin 222 100% sideways global, 70% anti‐clockwise local 

1/2 IPE 500 - thin 239 100% sideways global, 70% clockwise local 

1/2 IPE 500 - thin 256 100% sideways global, 70% anti‐clockwise local 

1/2 IPE 500 - thin 273 100% sideways global, 70% clockwise local 

1/2 IPE 500 - thin 290 100% sideways global, 70% clockwise local 

1/2 IPE 500 - thin 307 100% sideways global, 70% anti‐clockwise local 

1/2 IPE 500 - thin 324 100% sideways global, 70% clockwise local 

1/2 IPE 500 - thin 341 100% sideways global, 70% clockwise local 

Table 29: Failure modes for the IPE 500 thin 
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7 Development and verification of alternative design 

proposals for Class 4 sections 

As seen in chapter 6 there was room for improvement on the current Eurocode 3 method 

of dimensioning class 4 T-sections. The current method, even the method implemented in 

the Austrian national annex for mono-symmetric sections, is extremely conservative for 

class 4 T-sections in compression and would lead to over dimensioning of the T-sections. A 

large portion of the section’s resistance is needed, in the Eurocode, to counteract the 

moment that is predicted to be relevant due to the shift of the centroid.  

In the following pages, a number of alternative design proposals will be presented and 

verified against the available GMNIA results. In this chapter the results are displayed in 

graphs where 
∗

 is plotted against the length of the member. In Appendix A the results 

are shown again as 
∗
	plotted against the effective torsional-flexural slenderness.  

7.1 Proposal 1 

The first suggestion was to ignore the aforementioned moment and see how unsafe the 

sections would be if the dimensioning was carried out just taking the axial force into 

account. It was expected that the load bearing capacity of the sections would be 

overestimated and that they would be unsafe, however it would give a good starting point 

for any other suggestions. 

It meant that the equations from Eurocode 3, rewritten below for easier read, had to be 

adapted in a significant simpler form. 

∗ ∗
∗ ∗ e 	
∗ ,

1										 . 1  
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∗ ∗
∗ e

∗ ,
1										 . 2  

∗ ∗
∗ e

∗ ,
1										 . 3  

They were transformed to the following 3 very simple equations. 

∗ ∗
1										 . 1 	 	1 

∗ ∗
1										 . 2 	 	1 

∗ ∗
1										 . 3 	 	1 

From here the new buckling force resistance could be calculated.(	  if all 3 

equations are fulfilled) 

All of the section properties for the gross section and effective section had already been 

calculated. The coefficients to help calculate the reduction factors were calculated using the 

current Eurocode 3 method and not the coefficient explained previously in chapter 5  as 

the “new proposal” according to Taras et al.  

Φ 0.5 1 α λ 0.2 λ  

Φ 0.5 1 α λ 0.2 λ  

Φ 0.5 1 α λ 0.2 λ  

1

Φ Φ ̅
1.0 

1

Φ Φ ̅
1.0 
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1

Φ Φ ̅
1.0 

So these have also previously been calculated. The criteria were then simply transformed so 

that a buckling force resistance was found to be the smallest result returned.  

, ∗ ∗  

, ∗ ∗  

, ∗ ∗  

These criteria were then evaluated for all of the lengths that we had used for the finite 

element calculations. The results could then be plotted into a buckling curve. Using a 

364cm long IPE 500 member the method is explained here. The properties that were 

calculated previously are also listed. 

8076	 / ²; 21000	 / ²; 	 57.8	 ; 	 52.85	 ;  

	 3260	 ; 	 1070	 ; 	 44.6	 ; 4.3026	 ; 	7.5101	  

2
6.01

1.6
2

5.2	  

	 102.06	  

N ,
∗ ∗ ∗ 21000 ∗ 3260

364
5104.4	  

N ,
∗ ∗ ∗ 21000 ∗ 1070

364
1673.8	  

, 	
1 1

102.06
∗ 8076 ∗ 44.6 3529.3	  

,
,

2 ∗ 1
1 ,

,
1 ,

,
4 ∗ ∗ ,

,
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,
1673.8

2 ∗ 1 5.21²
102.06

1
3529
1673.8

1
3529
1673.8

4 ∗
5.21²
102.06

∗
3529
1673.8

 

, 1419.7	  

a) Torsional-flexural buckling 

λ
A ∗ f
N ,

52,85 ∗ 23.5
1419.7

0.93532 

Φ 0.5 1 α λ 0.2 λ 0.5 1 0.49 0.93532 0.2 0.93532²  

Φ 1.1176 

1

Φ Φ λ
1.0 

1

1.1176 1.1176² 0.93532²
0.57829 1.0 

The buckling force resistance in respect to the torsional-flexural buckling was calculated. 

, 0.57829 ∗ 52.85 ∗ 23.5 718.65	 										 . 2 	 	1 

b) Flexural buckling about the z-z axis 

, , 			 					  

This means that this equation is never relevant 

c) Flexural buckling about the y-y axis 

λ
A ∗ f

N ,

52.85 ∗ 23.5
5104.4		

0.4933 

Φ 0.5 1 α λ 0.2 λ 0.5 1 0.49 0.4933 0.2 0.4933²  
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Φ 0.6935 

1

Φ Φ λ

1

0.6935 0.6935² 0.4933²
0.8468 1.0 

The buckling resistance for the y-y axis buckling was then calculated.  

, 0.8468 ∗ 52.85 ∗ 23.5 1051.7	 										 . 1 	 	1 

So the smallest of the values was the result. This was the torsional-flexural resistance. A 

buckling resistance of , 718.65	  was obtained. This value was divided by the 

gross section resistance. 

,

∗
718.65

57.8 ∗ 23.5
0.529 

 is the gross area of the section. This value can be seen in Figure 65. 

The IPE 300 was the first section on which this theory was tested. The results for every 

length were calculated and plotted over the length of the members (see Figure 63). 
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Figure 63: IPE 300 - proposal 1  

The results in Figure 63 for an IPE 300, were surprising because they are conservative for 

every different length member. If this were true for all of the sections this would be a good 

suggestion for dimensioning T-sections under an axial force (see Figure 64 - Figure 69). 
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Figure 64 : IPE 400 - proposal 1 

  

Figure 65: IPE 500 - proposal 1 
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Figure 66: IPE 600 - proposal 1 

The results for all of the standard IPE sections, shown in Figure 63, Figure 64, Figure 65 

and Figure 66 returned positive to this proposal. The results were all on the safe side. This 

means that for these sections the moment that would be induced by the reduced section 

could actually be totally ignored!  

The results for the other sections were also then obtained. Figure 67 shows the results 

obtained for the IPE 500-t which had a flange width of only 10cm. Again the proposal 

looks to fit very well to the finite element results. The results were almost too conservative. 

The results for the IPE 500-w are shown in Figure 68. Here we can see that the values 

follow the results almost perfectly and are always on the side of caution, providing an 

acceptable margin of safety.  
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Figure 67: IPE 500-t - proposal 1 

  

Figure 68: IPE 500-w - proposal 1 
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Finally the HE-A 500 was investigated. This was different to all the other sections as the y-y 

axis was the weaker one. The results can be seen in Figure 69. This was the first section 

where “Proposal 1” did not consistently stay on the safe side. It did lean minimally to being 

unsafe; however such a small difference could be seen as acceptable and may then be 

covered once the residual stress distribution for such sections are more accurately known. 

 

Figure 69: HE-A 500 - proposal 1 

After nearly all of the results for proposal 1 were better than expected, a second proposal 

was tested.  

7.2 Proposal 2 

The second proposal involved removing the effective cross section properties and seeing if, 

in the case of the structural T-sections, the gross section values could be used for the 

calculations. 

As an example the IPE 500 with a length of 364cm was calculated. 
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a) Calculation of slenderness 

λ
A ∗ f

N ,

57.8 ∗ 23.5
5104.4		

0.5157 

λ
A ∗ f
N ,

57.8 ∗ 23.5
1673.8	

0.900 

λ
A ∗ f
N ,

57.8 ∗ 23.5
1419.7

0.9772 

b) Calculation of buckling factors 

Φ 0.5 1 α λ 0.2 λ 0.5 1 0.49 0.5157 0.2 0.5157²  

Φ 0.71 

Φ 0.5 1 α λ 0.2 λ 0.5 1 0.49 0.9772 0.2 0.9772²  

Φ 1.1679 

1

Φ Φ λ

1

0.71 0.71² 0.5157²
0.8347 1.0 

1

Φ Φ λ

1

1.1679 1.1679² 0.9772²
0.5533 1.0 

The smallest of the reduction factor values was then the result. Here the value was 0.5533. 

This value can be plotted directly in Figure 72. For the final compression capacity we get: 

, ∗ ∗  

In this case 

0.5533 ∗ 57.8 ∗ 23.5 751.5	  
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Figure 70: IPE 300 - proposal 2 compared to proposal 1 

The IPE 300 was the first section on which this proposal was tested (see Figure 70). The 

results showed that this curve coincided with the finite element results better than the 

“Proposal 1”. Here there was a marginal improvement in the results. “Proposal 2” was then 

compared to the results for the other sections. 
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Figure 71: IPE 400 - proposal 2 compared to proposal 1 

 

Figure 72: IPE 500 - proposal 2 compared to proposal 1 
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Figure 73: IPE 600 - proposal 2 compared to proposal 1 

The results showed (Figure 71 to Figure 73) that the proposal was very fitting for all of the 

standard IPE sections which had been calculated. This was a considerable improvement on 

the shortest length members over “Proposal 1”.   This left the question how it looked 

compared to the modified sections.  The results for the IPE 500-t still seemed to be 
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if this curve is used, however still an improvement on “Proposal 1”. 
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always had an appropriate margin of safety. It was an improvement on “Proposal 1”. 

Finally the HE-A 500, which was already slightly on the unsafe side using the curve from 

“Proposal 1”, was looked at. The results can be seen in Figure 76. The second proposal did 

not create any advantages for this section! It just amplified the problems from the first 

proposal.  

These errors, however, could be in an acceptable range that may be covered once the 

residual stresses for T-sections have been investigated more thoroughly. 
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Figure 74: IPE 500-t - proposal 2 compared to proposal 1 

 

Figure 75: IPE 500-w - proposal 2 compared to proposal 1 
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Figure 76: HE-A 500 - proposal 2 compared to proposal 1 

7.3 Proposal 3 

When looking at the previous results for the standard IPE sections for “Proposal 2”, it was 

clear that for the shorter members of each section, the margin of safety was still very high. 

This looked very similar to the problem investigated in chapter 5 “Buckling Strength of 

Class 2 Sections”. It was decided that, as the problems looked very similar, the 

improvements found for class 2 sections could possibly be implemented in class 4 sections. 

N.B. only ,  and  are modified the rest is the same as proposal 1. 

This meant going back to the effective sectional properties and using the equation from 

chapter 5 “Buckling Strength of Class 2 Sections”. 

Φ 0.5 1 0.49 λ 0.2 λ  
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N.B. λ  is used instead of λ  

As an example the IPE 500 with a length of 364cm was calculated. 

λ
A ∗ f

N ,

52.85 ∗ 23.5
5104.4		

0.4933 

Φ 0.5 1 α λ 0.2 λ 0.5 1 0.49 0.4933 0.2 0.4933²  

Φ 0.6935 

1

Φ Φ λ

1

0.6935 0.6935² 0.4933²
0.8468 1.0			 . 1 	 

λ
A ∗ f

N ,

52.85 ∗ 23.5
1673.8

0.8614 

λ
A ∗ f

N ,

52,85 ∗ 23.5
1419.7

0.93532 

Φ 0.5 1 α λ 0.2 λ 0.5 1 0.49 0.8614 0.2 0.93532²  

Φ 1.0994 

1

Φ Φ λ
1.0 

1

1.0994 1.0994² 0.93532²
0.59617 1.0 

The buckling resistances for the y-y axis were then calculated. Here the effective area was 

used to obtain the resistance. 

	 ∗ A ∗ f  

, 0.8468 ∗ 52.85 ∗ 23.5 1051.7	  
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, 0.59617 ∗ 52.85 ∗ 23.5 740,50	  

Here again, the torsional-flexural failure was the definitive value with 740.50 kN. This value 

was divided by the gross section resistance. 

,

∗
740.50

57.8 ∗ 23.5
0.5452 

Where  was the gross area of the section. 

 

Figure 77: IPE 300 - proposal 3 and comparison 

The results from “Proposal 2” were plotted alongside the new results for “Proposal 3”.  

The effect that was wanted was also achieved for the IPE 300. Figure 77 shows the gap 

between the finite element calculations and the suggested resistance function narrowed for 

the less slender members. This was the first proposal where the results for an IPE section 
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As assumed, this was the case for all of the standard IPE sections (Figure 78 to Figure 80). 

The earlier values are much better than those predicted by “Proposal 2” however they do 

go onto the unsafe side. 

 

Figure 78: IPE 400 - proposal 3 and comparison 
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Figure 79: IPE 500 - proposal 3 and comparison 

 

Figure 80: IPE 600 - proposal 3 and comparison 
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It can also be seen in Figure 81, that the new proposal brought advantages for the 

dimensioning of IPE 500-t. The difference between the resistance curve and the finite 

element results was more than halved for the shorter members using the third proposal 

instead of the second. 

For the IPE 500-w the results were slightly “un-conservative” for the shorter members 

(Figure 82). This discrepancy may well be covered after further investigations into the 

residual stress. It looks, however as if this may be a discrepancy in the way the effective 

section is defined in EC 1993-1-1(see proposal 4). 

 

Figure 81: IPE 500-t - proposal 3 and comparison 
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Figure 82: IPE 500-w - proposal 3 and comparison 

This just left the HE-A 500. The new proposal had achieved more accurate results for the 

very short members however these values were not on the safe side. They were not 
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Figure 83: HE-A 500 - proposal 3 and comparison 

“Proposal 3” describes the real results for the longer members very accurately and safely. 

The one down side to this proposal is that for the short lengths it does go onto the unsafe 

side.  

The difference between the Eurocode 3 dimensioning and that of “proposal 3”is huge. If 

the T-sections were to be dimensioned using the proposed rule instead of the current rule it 

would mean that an IPE 500 with a length of 400 cm could resist a force up to 40% larger 

than that the results calculated using Eurocode 3. 

As the starting resistance was sometimes over the ABAQUS values, it implied that the 

effective area used to calculate the results was over estimated. Therefore another proposal 

was made with a reduced value for the effective area. 

7.4 Proposal 4 

It was considered that the eccentricity of the axial force may well have some noticeable 

effects, however not in the form stated in the Eurocode Austrian annex[10], that was 

previously investigated. 
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∗ ∗
∗

∗ ,
1 

If the effects of buckling are ignored (λ ≪) one gets the ultimate capacity. The following 

formula adapted from Eurocode 3 to find the capacity was considered: 

∗
∗

, ∗
1 

1 1
∗ , ∗

 

1 , ∗ ∗ ∗
∗ ∗ , ∗

 

1 , ∗
∗ , ∗

 

∗ , ∗

, ∗
∗ ∗  

 was then considered as ∗ ∗ , where ∗ was a new effective area, that 

would be used to calculate the new proposed values. This new effective area was calculated 

like this: 

∗ ∗ ,

, ∗
 

The reduction factor was then calculated in exactly the same way as in “proposal 3” 

however ∗ replaced . 

N.B. In this thesis the effective values for  and ,  are obtained using the more 

exact effective width method from EC 3, part 1.5 described in chapter 3.5 “Defining the 

effective sections used in this thesis”. 

As an example the IPE 500 with a length of 364cm was calculated. 

52.9, 113.1, 1.54 all the other values are the same as in proposal 3 
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∗ ∗
∗

52.9 ∗ 113.1
113.1 52.9 ∗ 1.54

30.75	 ² 

λ
∗ ∗ f

N ,

30.75 ∗ 23.5
5104.4		

0.3763 

Φ 0.5 1 α λ 0.2 λ 0.5 1 0.49 0.3763 0.2 0.3763²  

Φ 0.6140 

1

Φ Φ λ

1

0.6140 0.6140² 0.3763²
0.9098 1.0			 . 1 	 

λ
∗ ∗ f

N ,

30.75 ∗ 23.5
1673.8

0.6571 

λ
∗ ∗ f

N ,

30.75 ∗ 23.5
1419.7

0.7134 

Φ 0.5 1 α λ 0.2 λ 0.5 1 0.49 0.6571 0.2 0.7134²  

Φ 0.8665 

1

Φ Φ λ
1.0 

1

0.8665 0.8665² 0.7134²
0.7363 1.0 

The buckling resistances for the y-y axis were then calculated. Here the effective area was 

used to obtain the resistance. 

	 ∗ ∗ ∗ f  

, 0.9098 ∗ 30.75 ∗ 23.5 657.4	  
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, 0.7363 ∗ 30.75 ∗ 23.5 532.03	  

Here again, the torsional-flexural failure was the definitive value with 532.03	 kN. This 

value was divided by the gross section resistance. 

,

∗
532.03

57.8 ∗ 23.5
0.392 

Where  was the gross area of the section. 

 

Figure 84: IPE 300 – proposal 4 
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Figure 85: IPE 400 – proposal 4 

 

Figure 86: IPE 500 – proposal 4 
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Figure 87: IPE 600 – proposal 4 

 

Figure 88: IPE 500-t – proposal 4 
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Figure 89: IPE 500-w – proposal 4 

 

Figure 90: HE-A 500 – proposal 4 
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As we can see in these results, proposal 4 is very conservative. It makes more use of the 

available section compared to the present Eurocode calculations however in comparison to 

proposal 3 it is extremely conservative. 
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Class two sections were investigated to see the effects of torsional-flexural buckling and to 

see if any improvements were possible in this area. It was found that improvements could 

be made. It was then shown that the new proposals made by Taras et al corresponded to 

reality far better than the current Eurocode. Here, the slenderness of the member around 

the z-z axis is used to calculate the “generalized slenderness” component of the coefficient 

Φ  used to calculate the reduction factor  instead of the torsional-flexural slenderness. 

Φ 0.5 1 α λ 0.2 λ  

Thereby, α 0.49 for buckling curve c was found to be most appropriate to describe the 

buckling strength of T-sections with the residual stress patterns implied in the GMNIA 

calculations; however, if future experimental or numerical studies were to show more 

convenient residual stress distributions in actual T-sections, this coefficient and the resulting 

buckling curve could easily be adapted accordingly. 

The main part of the thesis dealt with are slender class 4 sections. The Eurocode 3 

buckling force resistances were then compared to the finite element results for class 4 

sections. This showed indisputably, that the Eurocode is extremely conservative when 

calculating axially loaded T-sections because of the additional moment Δ ∗  which 

must be considered, due to the shift of the centroids. 

 

Figure 92: Comparison of the present Eurocode 3 and proposal for IPE 500 section 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 100 200 300 400 500 600 700 800 900

N
R
d
/A

*f
y

[‐
]

length   [cm]

ABAQUS Results

Proposal 3

Current Eurocode 3



8 Conclusion 

118 

 

Proposals were then calculated ignoring the additional moment and compared to the finite 

element results. These comparisons were then evaluated and “proposal 3” was then seen as 

the most appropriate method. This involved using the slenderness of the member around 

the z-z axis to calculate the “generalized slenderness” component of the coefficient Φ  

used to calculate the reduction factor  instead of the torsional-flexural slenderness. The 

wrongly predicted effects of the shift of centroid and lateral-torsional buckling were also 

removed. 

Φ 0.5 1 α λ 0.2 λ  

The criteria that should then be used for dimensioning class 4 T-sections are shown here.  

∗ ∗
1 

∗ ∗
1 

Although many questions have been answered in this thesis there are more questions that 

still need to be answered. These include: 

 What is the exact residual stress distribution in a T-section? 

 How do class 4 T-section sections behave when under the influence of a 

bending force? 

 What is the behaviour when being bent and axially loaded? 

 How do other mono-symmetrical class 4 sections behave, such as C shaped 

beams? 

 How should the effective cross section be defined? 

 

 

 

End 
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Appendix A. Results - reduction factor against 

torsional-flexural slenderness 

  
Figure 93: IPE 300 proposal 1 
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Figure 94: IPE 400 proposal 1 

  
Figure 95: IPE 500 proposal 1 
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Figure 96: IPE 600 proposal 1 

  
Figure 97: IPE 500-t proposal 1 
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Figure 98: IPE 500-w proposal 1 

  
Figure 99: HE-A 500 proposal 1 
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Figure 100: IPE 300 proposal 2 

  
Figure 101: IPE 400 proposal 2 
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Figure 102: IPE 500 proposal 2 

  
Figure 103: IPE 600 proposal 2 
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Figure 104: IPE 500-t proposal 2 

  

Figure 105: IPE 500-w proposal 2 
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Figure 106: HE-A 500 proposal 2 

  
Figure 107: IPE 300 proposal 3 
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Figure 108: IPE 400 proposal 3 

  
Figure 109: IPE 500 proposal 3 
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Figure 110: IPE 600 proposal 3 

  
Figure 111: IPE 500-t proposal 3 
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Figure 112: IPE 500-w proposal 3 

  
Figure 113: HE-A 500 proposal 3 
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Figure 114: IPE 300 proposal 4 

  
Figure 115: IPE 400 proposal 4 
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Figure 116: IPE 500 proposal 4 

  
Figure 117: IPE 600 proposal 4 
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Figure 118: IPE 500-t proposal 4 

  
Figure 119: IPE 500-w proposal 4 
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Figure 120: HE-A 500 proposal 4
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